I praksis vil det glidende gjennomsnittet gi et godt estimat av gjennomsnittet av tidsserien hvis gjennomsnittet er konstant eller sakte endring. Ved konstant gjennomsnitt vil den største verdien av m gi de beste estimatene for det underliggende gjennomsnittet. En lengre observasjonsperiode vil gjennomsnittlig utvirke virkningen av variabilitet. Formålet med å gi en mindre m er å la prognosen svare på en endring i den underliggende prosessen. For å illustrere foreslår vi et datasett som inkorporerer endringer i det underliggende gjennomsnittet av tidsseriene. Figuren viser tidsseriene som brukes til illustrasjon sammen med den gjennomsnittlige etterspørselen fra hvilken serien ble generert. Middelet begynner som en konstant ved 10. Begynner på tid 21, øker den med en enhet i hver periode til den når verdien av 20 ved tid 30. Da blir det konstant igjen. Dataene blir simulert ved å legge til i gjennomsnitt, en tilfeldig støy fra en Normal-fordeling med null-middel og standardavvik 3. Resultatene av simuleringen avrundes til nærmeste heltall. Tabellen viser de simulerte observasjonene som brukes til eksemplet. Når vi bruker bordet, må vi huske at det til enhver tid bare er kjent med tidligere data. Estimatene til modellparameteren, for tre forskjellige verdier av m, vises sammen med gjennomsnittet av tidsseriene i figuren under. Figuren viser gjennomsnittlig glidende gjennomsnittlig beregning av gjennomsnittet hver gang og ikke prognosen. Prognosene ville skifte de bevegelige gjennomsnittskurver til høyre etter perioder. En konklusjon er umiddelbart tydelig fra figuren. For alle tre estimatene ligger det glidende gjennomsnittet bak den lineære trenden, idet laget øker med m. Laget er avstanden mellom modellen og estimatet i tidsdimensjonen. På grunn av lavet undervurderer det bevegelige gjennomsnittet observasjonene ettersom gjennomsnittet øker. Forskjellerens forspenning er forskjellen på en bestemt tid i middelverdien av modellen og middelverdien forutsatt av det bevegelige gjennomsnittet. Forspenningen når gjennomsnittet øker er negativt. For et avtagende middel er forspenningen positiv. Forsinkelsen i tid og bias innført i estimatet er funksjoner av m. Jo større verdien av m. jo større størrelsen på lag og forspenning. For en kontinuerlig økende serie med trend a. verdiene av lag og forspenning av estimatoren av middelet er gitt i ligningene nedenfor. Eksempelkurverne stemmer ikke overens med disse ligningene, fordi eksempelmodellen ikke øker kontinuerlig, men det begynner som en konstant, endrer seg til en trend og blir konstant igjen. Også eksempelkurvene påvirkes av støyen. Den bevegelige gjennomsnittlige prognosen for perioder inn i fremtiden er representert ved å flytte kurvene til høyre. Forsinkelsen og forspenningen øker proporsjonalt. Ligningene nedenfor angir lag og forspenning av prognoseperioder i fremtiden sammenlignet med modellparametrene. Igjen, disse formlene er for en tidsserie med en konstant lineær trend. Vi bør ikke bli overrasket over dette resultatet. Den bevegelige gjennomsnittlige estimatoren er basert på antagelsen om konstant gjennomsnitt, og eksemplet har en lineær trend i gjennomsnittet i en del av studieperioden. Siden sanntidsserier sjelden vil adlyde forutsetningene til en hvilken som helst modell, bør vi være forberedt på slike resultater. Vi kan også konkludere fra figuren at variasjonen av støyen har størst effekt for mindre m. Estimatet er mye mer flyktig for det bevegelige gjennomsnittet på 5 enn det bevegelige gjennomsnittet på 20. Vi har de motstridende ønskene om å øke m for å redusere effekten av variabilitet på grunn av støyen, og å redusere m for å gjøre prognosen mer lydhør for endringer i gjennomsnitt. Feilen er forskjellen mellom de faktiske dataene og den forventede verdien. Hvis tidsseriene er virkelig en konstant verdi, er den forventede verdien av feilen null og variansen av feilen består av et begrep som er en funksjon av og et andre begrep som er variansen av støyen. Første term er variansen av gjennomsnittet estimert med en prøve av m observasjoner, forutsatt at data kommer fra en befolkning med konstant gjennomsnitt. Denne termen er minimert ved å gjøre m så stor som mulig. Et stort m gjør prognosen uansvarlig for en endring i den underliggende tidsserien. For å gjøre prognosen lydhør for endringer, ønsker vi m så liten som mulig (1), men dette øker feilvariasjonen. Praktisk prognose krever en mellomverdi. Forecasting with Excel Forecasting-tillegget implementerer de bevegelige gjennomsnittlige formlene. Eksempelet nedenfor viser analysen som ble levert av tillegget for prøvedataene i kolonne B. De første 10 observasjonene er indeksert -9 til 0. Sammenlignet med tabellen over, forskyves periodindeksene med -10. De første ti observasjonene gir oppstartsverdiene for estimatet og brukes til å beregne det bevegelige gjennomsnittet for perioden 0. MA (10) kolonnen (C) viser de beregnede bevegelige gjennomsnittene. Den bevegelige gjennomsnittsparameteren m er i celle C3. Fore (1) kolonne (D) viser en prognose for en periode inn i fremtiden. Forespørselsintervallet er i celle D3. Når prognoseperioden endres til et større tall, blir tallene i Fore-kolonnen flyttet ned. Err-kolonnen (E) viser forskjellen mellom observasjonen og prognosen. For eksempel er observasjonen ved tidspunkt 1 6. Den prognostiserte verdien fra det bevegelige gjennomsnittet ved tid 0 er 11,1. Feilen er da -5,1. Standardavviket og gjennomsnittlig avvik (MAD) beregnes i henholdsvis celler E6 og E7. Vektet Flyttende gjennomsnittlig prognosemetoder: Fordeler og ulemper Hei, ELSKER innlegget ditt. Lurte på om du kunne utdype seg videre. Vi bruker SAP. I det er det et valg du kan velge før du kjører din prognose som kalles initialisering. Hvis du sjekker dette alternativet, får du et prospektresultat, hvis du kjører prognosen igjen, i samme periode, og ikke kontrollerer initialisering, endres resultatet. Jeg kan ikke finne ut hva den initialiseringen gjør. Jeg mener matematisk. Hvilket prognoseresultat er best å lagre og bruke for eksempel. Endringene mellom de to er ikke i prognosen, men i MAD og Error, sikkerhetslager og ROP-mengder. Ikke sikker på om du bruker SAP. hei takk for å forklare så effektivt det er for gd. takk igjen Jaspreet Legg igjen en kommentar Avbryt svar Om Shmula Pete Abilla er grunnleggeren av Shmula og tegnet Kanban Cody. Han har hjulpet selskaper som Amazon, Zappos, eBay, Backcountry, og andre, reduserer kostnader og forbedrer kundeopplevelsen. Han gjør dette gjennom en systematisk metode for å identifisere smertepunkter som påvirker kunden og virksomheten, og oppfordrer bred deltakelse fra selskapets medarbeidere til å forbedre sine egne prosesser. Dette nettstedet er en samling av hans erfaringer han ønsker å dele med deg. Kom i gang med gratis nedlastinger Beregn en prognose for ovennevnte etterspørsel ved hjelp av et 3- og 5-års glidende gjennomsnitt. Beregn en prognose for ovennevnte etterspørsel ved bruk av et 3- og 5-års glidende gjennomsnitt. Dags etterspørsel 1 200 2 134 3 157 4 165 5 177 6 125 7 146 8 150 9 182 10 197 11 136 Utvikle et regneark for å svare på følgende spørsmål. 12 163 Beregn en prognose for ovennevnte etterspørsel ved hjelp av et 3- og 5-års glidende gjennomsnitt. 13 157 Tegn disse prognosene og de opprinnelige dataene ved hjelp av Excel. Hva viser grafen 14 169 Hvilken av de ovennevnte prognosene er best Hvorfor Beregn en prognose av ovennevnte etterspørsel ved hjelp av et 3- og 5-års glidende gjennomsnitt. be om nytt arbeid under Postnavigasjon Skriv en anmeldelse Klikk her for å avbryte svar. aktiv 1 måned, 2 uker siden aktiv 2 måneder, 2 uker siden aktiv 2 måneder, 3 uker siden aktiv 2 måneder, 3 uker siden aktiv 2 måneder, 3 uker siden aktiv 2 måneder, 3 uker siden aktiv 2 måneder, 3 uker siden aktiv 2 måneder aktiv 2 måneder, 3 uker siden aktiv 2 måneder, 3 uker siden aktiv 2 måneder, 3 uker siden Nylige innlegg Testimonial Jeg elsker dette sosiale forumet designet for akademiske forfattere, jeg kan dele og sosialisere med min kollega i Tutoring industrien, studenter også nærmer meg meg for faglig assistanse, takk mye kimwood writer hjemmekontor ansvarsfraskrivelse socialfreelancer er et sosialt nettsted for akademiske forfattere, ansettelse, deling og postering av akademiske løsninger og studie ressurser er høyt garantert. Vi tilbyr også forhåndskrevne løsninger på vår eshop. Vi er sterkt imot enhver form for faglig uærlighet. Dette er måtene du skal bruke løsninger som følger med. 1. Som en referanse for uavhengig forståelse av emnet. 2. Som en kilde til ideer som begrunner din egen forskning (hvis referert til riktig. Testimonials sosial frilansere hjalp meg med å møte studenter som har vært trofaste kunder , jeg ber om arbeid utgitt av klienter her. i samhandler også med med mine kolleger for å vite hva som skjer rundt statistikken prof writertutor
No comments:
Post a Comment